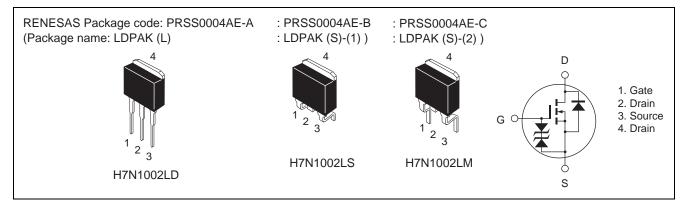
RENESAS

H7N1002LD, H7N1002LS, H7N1002LM


Silicon N Channel MOS FET **High Speed Power Switching**

REJ03G1131-0800 Rev.8.00 Nov 13, 2009

Features

- Low on-resistance
- $R_{DS (on)} = 8 m\Omega typ.$
- Low drive current
- Available for 4.5 V gate drive

Outline

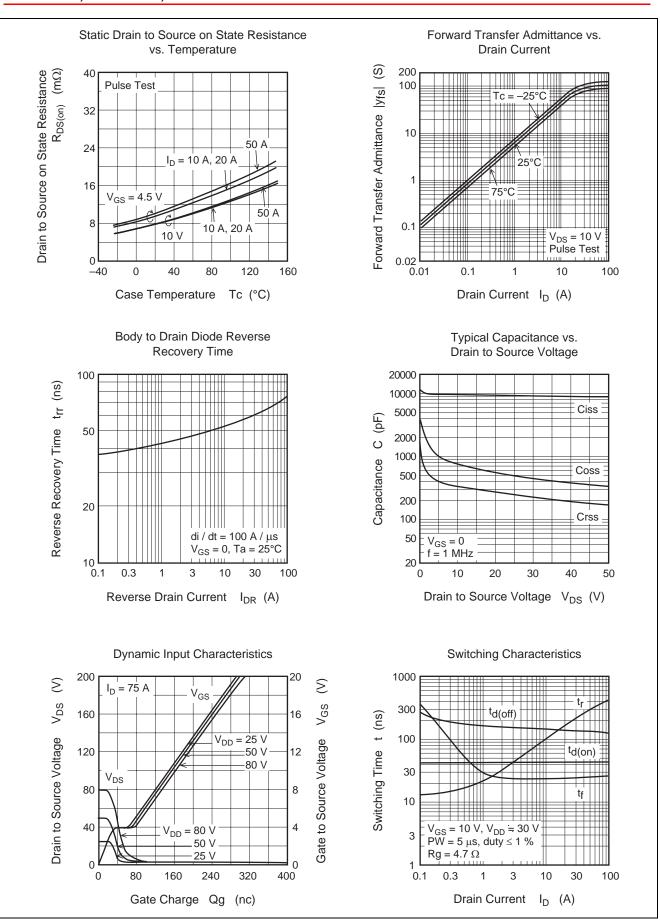
Absolute Maximum Ratings

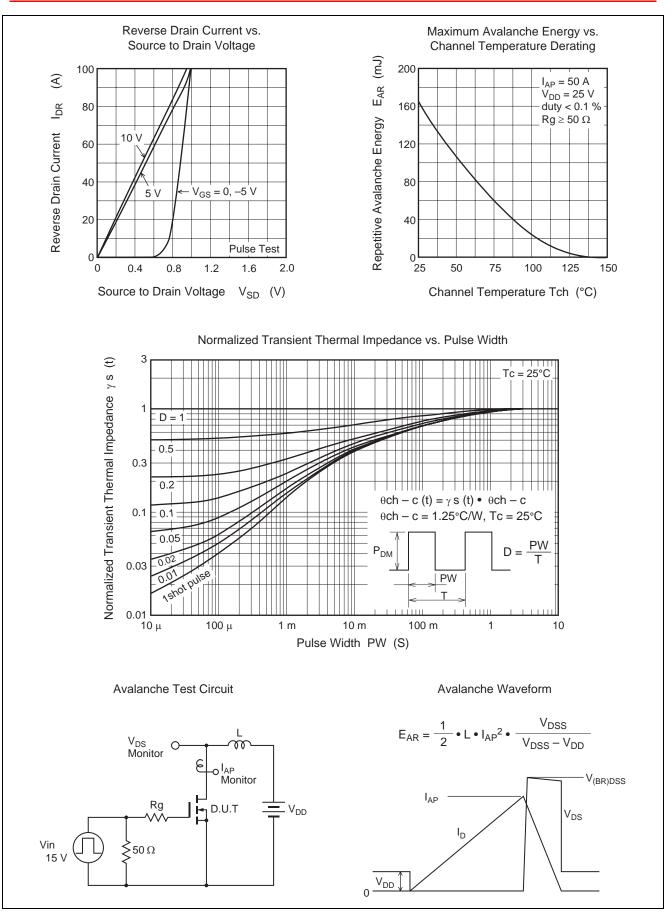
			$(Ta = 25^{\circ}C)$
Item	Symbol	Value	Unit
Drain to source voltage	V _{DSS}	100	V
Gate to source voltage	V _{GSS}	±20	V
Drain current	ID	75	A
Drain peak current	I _{D (pulse)} Note 1	300	A
Body to drain diode reverse drain current	I _{DR}	75	A
Avalanche current	I _{AP} Note 3	50	A
Avalanche energy	E _{AR} Note 3	166	mJ
Channel dissipation	Pch Note 2	100	W
Channel temperature	Tch	150	°C
Storage temperature	Tstg	-55 to +150	٥C

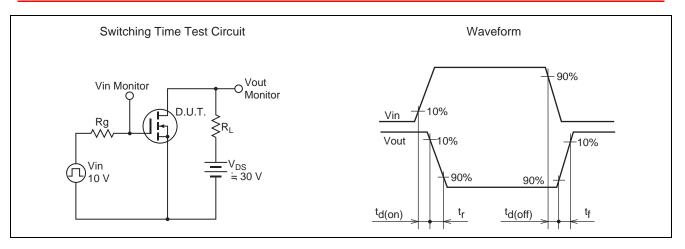
Notes: 1. PW \leq 10 μ s, duty cycle \leq 1%

2. Value at Tc = 25°C

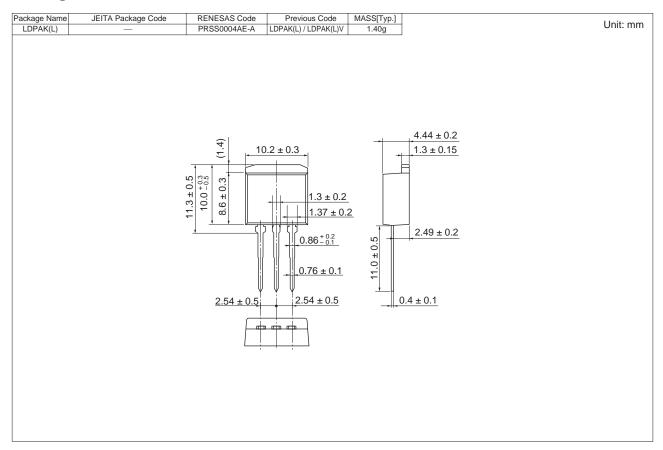
3. Value at Tch = 25° C, Rg $\geq 50 \Omega$

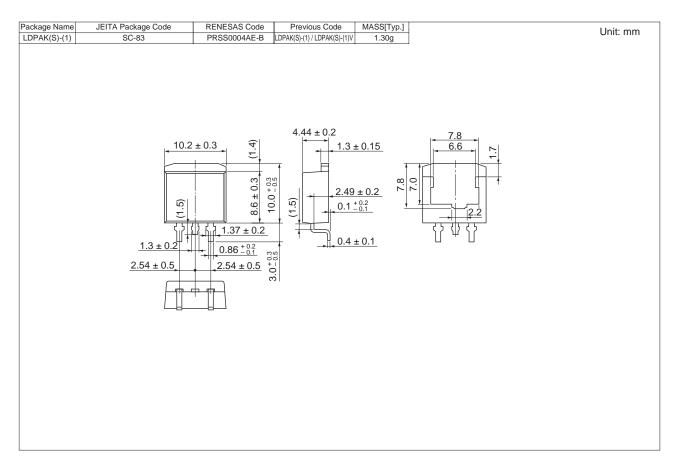

Electrical Characteristics

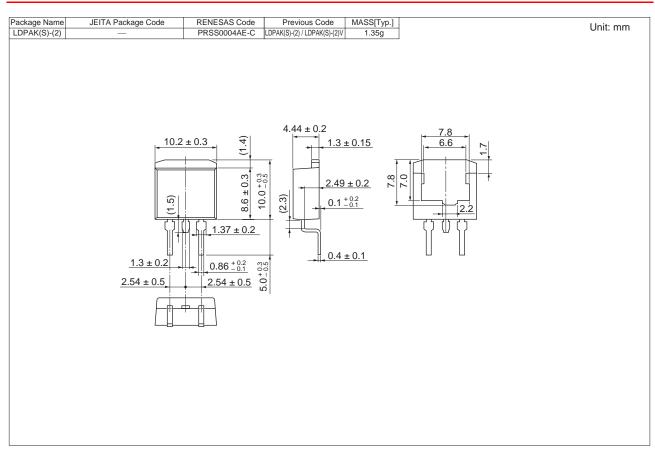

						$(Ta = 25^{\circ}C)$
Item	Symbol	Min	Тур	Max	Unit	Test Conditions
Drain to source breakdown voltage	V (BR) DSS	100	—	_	V	$I_D = 10 \text{ mA}, V_{GS} = 0$
Gate to source breakdown voltage	V (BR) GSS	±20	—	_	V	$I_G = \pm 100 \ \mu A, \ V_{DS} = 0$
Gate to source leak current	I _{GSS}	—	_	±10	μΑ	$V_{GS}=\pm 16~V,~V_{DS}=0$
Zero gate voltage drain current	I _{DSS}	—	—	10	μA	$V_{DS} = 100 \text{ V}, V_{GS} = 0$
Gate to source cutoff voltage	V _{GS (off)}	1.5	—	2.5	V	$I_D = 1 \text{ mA}, V_{DS} = 10 \text{ V}^{Note 4}$
Static drain to source on state	R _{DS (on)}	—	8	10	mΩ	$I_D = 37.5 \text{ A}, V_{GS} = 10 \text{ V}^{Note 4}$
resistance		—	10	15	mΩ	$I_D = 37.5 \text{ A}, V_{GS} = 4.5 \text{ V}^{\text{Note 4}}$
Forward transfer admittance	y _{fs}	57	95	_	S	$I_D = 37.5 \text{ A}, V_{DS} = 10 \text{ V}^{Note 4}$
Input capacitance	Ciss	—	9700	_	pF	V _{DS} = 10 V
Output capacitance	Coss	_	740	—	pF	$V_{GS} = 0$
Reverse transfer capacitance	Crss	—	330	_	pF	f = 1 MHz
Total gate charge	Qg	—	155	_	nC	V _{DD} = 50 V
Gate to source charge	Qgs	—	35	_	nC	V _{GS} = 10 V
Gate to drain charge	Qgd	—	33	_	nC	I _D = 75 A
Turn-on delay time	t _{d (on)}	—	43	_	ns	V_{GS} = 10 V, I_D = 37.5 A
Rise time	tr	—	245	_	ns	$R_L = 0.8 \Omega$
Turn-off delay time	t _{d (off)}	—	130		ns	Rg = 4.7 Ω
Fall time	t _f	—	25		ns	
Body to drain diode forward voltage	V_{DF}	—	0.93		V	$I_F = 75 \text{ A}, V_{GS} = 0$
Body to drain diode reverse recovery	t _{rr}	—	70		ns	$I_F = 75 \text{ A}, V_{GS} = 0$
time						di _F /dt = 100 A/µs


Note: 4. Pulse test

Main Characteristics







Package Dimensions

H7N1002LD, H7N1002LS, H7N1002LM

Ordering Information

Part Name	Quantity	Shipping Container
H7N1002LD-E	500 pcs	Box (Conductive Sack)
H7N1002LSTL-E	1000 pcs	Taping
H7N1002LMTL-E	1000 pcs	Taping

RenesasTechnology Corp. sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

- Benesas lechnology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan
 Pines
 This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for their use. Renesas neither makes warranties or representations with respect to the accuracy or completeness of the information in this document.
 But not infinited to, product data. diagrams, charts, programs, algorithms, and application scule as the development of weapons of mass and regulations, and proceedures required by such laws and regulation.
 All information in the purpose of any other military use. When exporting the products or the technology described herein, you should follow the applicable export control laws and regulations, and proceedures required by such laws and regulations.
 All information included in this document, such as product data, diagrams, charts, programs, algorithms, and application oracit useraphes, is current as of the date this document, but has product data, diagrams, charts, programs, algorithms, and application is activated in this document, but has product data, diagrams, charts, programs, algorithms, and application is a the development of the date this document, but here applicable export control laws and regulations.
 Renesas has used reasonable care in compiling the information in this document, but Renesas assumes no liability whatsoever for any damages incurred as a disclosed by Renesas study and product specified by Renesas and the study application specific by and application specific by and application in the document, and applications and regulations.
 When using or otherwise regulations in the information in this document, but Renesas assumes no liability whatsoever for any damages incurred as a disclosed by Renesas stallar on the document.
 When using or otherwise regulation the date date date document.
 When using or otherwise r

RENESAS SALES OFFICES

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

Renesas Technology America, Inc.

450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K. Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology (Shanghai) Co., Ltd. Unit 204, 205, AZIACenter, No.1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120 Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7858/7898

Renesas Technology Hong Kong Ltd. 7th Floor, North Tower, World Finance Centre, Harbour City, Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2377-3473

Renesas Technology Taiwan Co., Ltd. 10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 3518-3399

Renesas Technology Singapore Pte. Ltd.

1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001

Renesas Technology Korea Co., Ltd. Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145

Renesas Technology Malaysia Sdn. Bhd Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510

http://www.renesas.com